From Fundamentals to Advanced: 50+ Integration Formulas Explored
Table of Contents
Introduction
Unlock the power of mathematical analysis with Integration Formulas, a crucial element in calculus. Integration is a mathematical operation that involves finding the integral of a function, representing the area under its curve on a given interval. It is the reverse process of differentiation and plays a pivotal role in calculus. Understanding integration is essential for solving problems related to accumulation, motion, and change. From calculating areas to predicting future values, integration is a versatile tool. Let’s delve into the fundamental aspects of integration and explore a comprehensive list of basic integration formulas.
List of Basic Integration Formula
Since \( \frac{d}{dx}(F(x))=f(x) \iff \int f(x)\,\mathrm{d}x = F(x) +c \), based upon this definition and various standard differentiation formulas, we obtain the following integration formulae:
\begin{align*} 1. & \quad \int x^n \,\mathrm{d}x = \frac{x^{n+1}}{n+1}+C \quad (n \neq -1) \\[0.2cm] 2. & \quad \int \frac{1}{x} \,\mathrm{d}x = \log x+C \\[0.2cm]3. & \quad \int e^x \,\mathrm{d}x = e^x+C \\[0.2cm] 4. & \quad \int a^x \,\mathrm{d}x = \frac{a^x}{\log a}+C \\[0.2cm] 5. & \quad \int \sin x \,\mathrm{d}x = -\cos x+C \\[0.2cm] 6. & \quad \int \cos x \,\mathrm{d}x = \sin x+C \\[0.2cm] 7. & \quad \int \sec^2 x \,\mathrm{d}x = \tan x +C\\[0.2cm] 8. & \quad \int \csc^2 x \,\mathrm{d}x = -\cot x +C \\[0.2cm] 9. & \quad \int \sec x \tan x \,\mathrm{d}x = \sec x+C \\[0.2cm] 10. & \quad \int \csc x \cot x \,\mathrm{d}x = -\csc x+C \\[0.2cm] 11. & \quad \int \frac{1}{\sqrt{1-x^2}} \,\mathrm{d}x = \sin^{-1} x +C \\[0.2cm] 12. & \quad \int \frac{1}{1+x^2} \,\mathrm{d}x = \tan^{-1} x +C \\[0.2cm] 13. & \quad \int \frac{1}{x \sqrt{x^2-1}} \,\mathrm{d}x = \sec^{-1} x +C \end{align*}
Basic Properties of Indefinite Integration
\begin{align*} 1. & \quad \int kf(x) \,\mathrm{d}x = k\int f(x) \, \mathrm{d}x, \text{ where k is a constant.}\\[0.2cm] 2. & \quad \int \left( f_1(x)\pm f_2(x)\pm \cdots \pm f_n(x) \right) \,\mathrm{d}x = \int f_1(x) \,\mathrm{d}x \pm \int f_2(x) \,\mathrm{d}x \pm \cdots \pm \int f_n(x) \,\mathrm{d}x\end{align*}
Integration of Function \( f(ax+b) \)
\begin{align*}\int f(x) \, \mathrm{d}x =F(x) +C \Longrightarrow \int f(ax+b)\, \mathrm{d}x=\frac{F(ax+b)}{a}+C \end{align*}
Hence the following results.
\begin{align*}1.& \quad \int \sin(ax+b)\,\mathrm{d}x=-\frac 1a \cos(ax+b)+C\\[0.2cm]2.& \quad \int \cos(ax+b)\,\mathrm{d}x=\frac 1a \sin(ax+b)+C\\[0.2cm]3.& \quad \int e^{ax}\,\mathrm{d}x=\frac 1ae^{ax}+C\\[0.2cm] 4.& \quad \int \frac{1}{ax+b}\, \mathrm{d}x=\frac 1a\log(ax+b)+C\\[0.2cm] 5.& \quad \int (ax+b)^n\,\mathrm{d}x=\frac{(ax+b)^{n+1}}{a(n+1)}+C\end{align*}
Integration of Function involving \( f'(x) \)
Integration of \( \tan x, \cot x, \sec x \,\& \csc x \)
\begin{align*} 1. & \quad \int \tan x\, \mathrm{d}x=\log|\sec x |+C\\[0.2cm]2.& \quad \int \cot x\, \mathrm{d}x=\log|\sin x|+C\\[0.2cm]3.& \quad \int \sec x\, \mathrm{d}x=\log|\sec x + \tan x|+C=\log \left| \tan \left( \frac{\pi}{4}+\frac x2 \right) \right|+C\\[0.2cm]4.& \quad \int \csc x\, \mathrm{d}x=\log|\csc x-\cot x|+C = \log\left|\tan \left( \frac x2 \right) \right|+C\end{align*}
Integration By Parts
Integration by Parts is a technique used in calculus to evaluate the integral of a product of two functions. The formula for Integration by Parts is derived from the product rule for differentiation and is expressed as:
\[ \int u \,\mathrm{d}v =uv-\int v \,\mathrm{d}u \]
where:
- \( u \) and \( \mathrm{d}v \) are differentiable functions of \( x \),
- \( \mathrm{d}u \) is the derivative of \( u \) with respect to \( x \),
- \( v \) is the antiderivative (or integral) of \( dv \) with respect to \( x \).
The formula is often remembered using the acronym “LIATE,” which stands for Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, and Exponential functions. When choosing \( u \) and \( dv \) in the formula, it is generally recommended to select \( u \) based on the order of functions in the LIATE mnemonic, as this helps simplify the integral.
Here are some standard formulae where the Integration by Parts rule is used:
Click here to see how Integrating by Parts rule is used to find integration of \( \ln x \)
Pingback: Integration of ln(x) - mathonlinenotes.com
Very useful
Nice blog on list of integration formulae
I would highly recommend this blog to anyone looking to deepen their understanding of integration and explore its applications in diverse fields. It’s not just a resource; it’s a gateway to unlocking the profound intricacies of calculus.